Publication:
Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink

Thumbnail Image

Open/View Files

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Yu, Yin, Kazim K. Moncal, Jianqiang Li, Weijie Peng, Iris Rivero, James A. Martin, and Ibrahim T. Ozbolat. 2016. “Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink.” Scientific Reports 6 (1): 28714. doi:10.1038/srep28714. http://dx.doi.org/10.1038/srep28714.

Research Data

Abstract

Recent advances in bioprinting have granted tissue engineers the ability to assemble biomaterials, cells, and signaling molecules into anatomically relevant functional tissues or organ parts. Scaffold-free fabrication has recently attracted a great deal of interest due to the ability to recapitulate tissue biology by using self-assembly, which mimics the embryonic development process. Despite several attempts, bioprinting of scale-up tissues at clinically-relevant dimensions with closely recapitulated tissue biology and functionality is still a major roadblock. Here, we fabricate and engineer scaffold-free scalable tissue strands as a novel bioink material for robotic-assisted bioprinting technologies. Compare to 400 μm-thick tissue spheroids bioprinted in a liquid delivery medium into confining molds, near 8 cm-long tissue strands with rapid fusion and self-assemble capabilities are bioprinted in solid form for the first time without any need for a scaffold or a mold support or a liquid delivery medium, and facilitated native-like scale-up tissues. The prominent approach has been verified using cartilage strands as building units to bioprint articular cartilage tissue.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories