Publication: Nanoshells as a high-pressure gauge analyzed to 200 GPa
Open/View Files
Date
2011
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Van den Broeck, Nick, Katrijn Putteneers, Jacques Tempere, and Isaac F. Silvera. 2011. “Nanoshells as a High-Pressure Gauge Analyzed to 200 GPa.” Journal of Applied Physics 110 (11): 114318. doi:10.1063/1.3665649.
Research Data
Abstract
In this article, we present calculations that indicate that nanoshells can be used as a high-pressure gauge in diamond anvil cells (DACs). Nanoparticles have important advantages in comparison with the currently used ruby fluorescence gauge. Because of their small dimensions, they can be spread uniformly over a diamond surface without bridging between the two diamond anvils. Furthermore, their properties are measured by broad-band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Finally, their resonant frequencies can be tuned to lie in a convenient part of the visible spectrum accessible to CCD detectors. Theoretical calculations for a nanoshell with a SiO2 core and a golden shell, using both the hybridization model and Mie theory, are presented here. The calculations for the nanoshell in vacuum predict that nanoshells can indeed have a measurable pressure-dependent optical response desirable for gauges. However, when the nanoshells are placed in commonly used DAC pressure media, resonance peak positions as a function of pressure are no longer single valued and depend on the pressure media, rendering them impractical as a pressure gauge. To overcome these problems, an alternative nanoparticle is studied: coating the nanoshell with an extra dielectric layer (SiO2) provides an easy way to shield the pressure gauge from the influence of the medium, leaving the compression of the particle as a result of the pressure as the main effect on the spectrum. We have analyzed the response to pressure up to 200 GPa. We conclude that a coated nanoshell could provide a new gauge for high-pressure measurements that has advantages over current methods.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service