Publication:
Energy rate density as a complexity metric and evolutionary driver

Thumbnail Image

Date

2010

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Chaisson, E. J. 2010. “Energy Rate Density as a Complexity Metric and Evolutionary Driver.” Complexity 16 (3) (May 17): 27–40. doi:10.1002/cplx.20323.

Research Data

Abstract

The proposition that complexity generally increases with evolution seems indisputable. Both developmental and generational changes often display a rise in the number and diversity of properties describing a wide spectrum of ordered systems, whether physical, biological, or cultural. This article explores a quantitative metric that can help to explain the emergence and evolution of galaxies, stars, planets, and life throughout the history of the Universe. Energy rate density is a single, measurable, and unambiguous quantity uniformly characterizing Nature's many varied complex systems, potentially dictating their natural selection on vast spatial and temporal scales.

Description

Other Available Sources

Keywords

energy, complexity, evolution, thermodynamics, universe

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories