Publication: Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Brooks, Andrew W., Kevin D. Kohl, Robert M. Brucker, Edward J. van Opstal, and Seth R. Bordenstein. 2016. “Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History.” PLoS Biology 14 (11): e2000225. doi:10.1371/journal.pbio.2000225. http://dx.doi.org/10.1371/journal.pbio.2000225.
Research Data
Abstract
Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions.
Description
Other Available Sources
Keywords
Biology and Life Sciences, Microbiology, Medical Microbiology, Microbiome, Genetics, Genomics, Microbial Genomics, Organisms, Animals, Vertebrates, Amniotes, Mammals, Rodents, Peromyscus, Microbial Evolution, Evolutionary Biology, Organismal Evolution, Model Organisms, Animal Models, Drosophila Melanogaster, Invertebrates, Arthropoda, Insects, Drosophila, Evolutionary Systematics, Phylogenetics, Animal Phylogenetics, Taxonomy, Computer and Information Sciences, Data Management, Zoology, Medicine and Health Sciences, Epidemiology, Disease Vectors, Insect Vectors, Mosquitoes, Molecular Biology, Molecular Biology Techniques, Molecular Biology Assays and Analysis Techniques, Phylogenetic Analysis
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service