Publication: Genome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Hodonsky, C. J., D. Jain, U. M. Schick, J. V. Morrison, L. Brown, C. P. McHugh, C. Schurmann, et al. 2017. “Genome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos.” PLoS Genetics 13 (4): e1006760. doi:10.1371/journal.pgen.1006760. http://dx.doi.org/10.1371/journal.pgen.1006760.
Research Data
Abstract
Prior GWAS have identified loci associated with red blood cell (RBC) traits in populations of European, African, and Asian ancestry. These studies have not included individuals with an Amerindian ancestral background, such as Hispanics/Latinos, nor evaluated the full spectrum of genomic variation beyond single nucleotide variants. Using a custom genotyping array enriched for Amerindian ancestral content and 1000 Genomes imputation, we performed GWAS in 12,502 participants of Hispanic Community Health Study and Study of Latinos (HCHS/SOL) for hematocrit, hemoglobin, RBC count, RBC distribution width (RDW), and RBC indices. Approximately 60% of previously reported RBC trait loci generalized to HCHS/SOL Hispanics/Latinos, including African ancestral alpha- and beta-globin gene variants. In addition to the known 3.8kb alpha-globin copy number variant, we identified an Amerindian ancestral association in an alpha-globin regulatory region on chromosome 16p13.3 for mean corpuscular volume and mean corpuscular hemoglobin. We also discovered and replicated three genome-wide significant variants in previously unreported loci for RDW (SLC12A2 rs17764730, PSMB5 rs941718), and hematocrit (PROX1 rs3754140). Among the proxy variants at the SLC12A2 locus we identified rs3812049, located in a bi-directional promoter between SLC12A2 (which encodes a red cell membrane ion-transport protein) and an upstream anti-sense long-noncoding RNA, LINC01184, as the likely causal variant. We further demonstrate that disruption of the regulatory element harboring rs3812049 affects transcription of SLC12A2 and LINC01184 in human erythroid progenitor cells. Together, these results reinforce the importance of genetic study of diverse ancestral populations, in particular Hispanics/Latinos.
Description
Other Available Sources
Keywords
Biology and Life Sciences, Cell Biology, Cellular Types, Animal Cells, Blood Cells, Red Blood Cells, Biochemistry, Proteins, Hemoglobin, Computational Biology, Genome Analysis, Genome-Wide Association Studies, Genetics, Genomics, Human Genetics, Genetic Loci, Chromosome Biology, Chromosomes, Alleles, Quantitative Trait Loci, Sex Chromosomes, X Chromosomes
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service