Publication: Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Becker, S. C., D. R. Roach, V. S. Chauhan, Y. Shen, J. Foster-Frey, A. M. Powell, G. Bauchan, et al. 2016. “Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus.” Scientific Reports 6 (1): 25063. doi:10.1038/srep25063. http://dx.doi.org/10.1038/srep25063.
Research Data
Abstract
Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service