Publication:
Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

Thumbnail Image

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Amankwah, Ernest K., Hui-Yi Lin, Jonathan P. Tyrer, Kate Lawrenson, Joe Dennis, Ganna Chornokur, Katja K. H. Aben, et al. 2015. “Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.” Genetic Epidemiology 39 (8) (September 24): 689–697. Portico. doi:10.1002/gepi.21921.

Research Data

Abstract

Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

Description

Keywords

ovarian cancer, epithelial-mesenchymal transition, single nucleotide polymorphisms

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories