Publication:
Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hayworth, Kenneth J., C. Shan Xu, Zhiyuan Lu, Graham W. Knott, Richard D. Fetter, Juan Carlos Tapia, Jeff W. Lichtman, and Harald F. Hess. 2015. “Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics.” Nature methods 12 (4): 319-322. doi:10.1038/nmeth.3292. http://dx.doi.org/10.1038/nmeth.3292.

Research Data

Abstract

FIB-SEM has become an essential tool for studying neural tissue at resolutions below 10×10×10 nm, producing datasets superior for automatic connectome tracing. We present a technical advance, ultrathick sectioning, which reliably subdivides embedded tissue samples into chunks (20 µm thick) optimally sized and mounted for efficient, parallel FIB-SEM imaging. These chunks are imaged separately and then ‘volume stitched’ back together, producing a final 3D dataset suitable for connectome tracing.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories