Publication:
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants

Thumbnail Image

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Fritsche, L. G., W. Igl, J. N. Cooke Bailey, F. Grassmann, S. Sengupta, J. L. Bragg-Gresham, K. P. Burdon, et al. 2016. “A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.” Nature genetics 48 (2): 134-143. doi:10.1038/ng.3448. http://dx.doi.org/10.1038/ng.3448.

Research Data

Abstract

Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories