Publication:
Decoding Human Regulatory Circuits

Thumbnail Image

Date

2004

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Cold Spring Harbor Laboratory Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Thompson, W. 2004. “Decoding Human Regulatory Circuits.” Genome Research 14 (10a) (September 13): 1967–1974. doi:10.1101/gr.2589004.

Research Data

Abstract

Clusters of transcription factor binding sites (TFBSs) which direct gene expression constitute cis-regulatory modules (CRMs). We present a novel algorithm, based on Gibbs sampling, which locates, de novo, the cis features of these CRMs, their component TFBSs, and the properties of their spatial distribution. The algorithm finds 69% of experimentally reported TFBSs and 85% of the CRMs in a reference data set of regions upstream of genes differentially expressed in skeletal muscle cells. A discriminant procedure based on the output of the model specifically discriminated regulatory sequences in muscle-specific genes in an independent test set. Application of the method to the analysis of 2710 10-kb fragments upstream of annotated human genes identified 17 novel candidate modules with a false discovery rate ≤0.05, demonstrating the applicability of the method to genome-scale data.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories