Publication: Shape Modeling and Analysis with Entropy-Based Particle Systems
Open/View Files
Date
2007
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Cates J, Fletcher PT, Styner M, Shenton M, Whitaker R. 2007. Shape modeling and analysis with entropy-based particle systems. Inf Process Med Imaging 20:333-45. doi:10.1007/978-3-540-73273-0_28
Research Data
Abstract
This paper presents a new method for constructing compact statistical point-based models of ensembles of similar shapes that does not rely on any specific surface parameterization. The method requires very little preprocessing or parameter tuning, and is applicable to a wider range of problems than existing methods, including nonmanifold surfaces and objects of arbitrary topology. The proposed method is to construct a point-based sampling of the shape ensemble that simultaneously maximizes both the geometric accuracy and the statistical simplicity of the model. Surface point samples, which also define the shape-to-shape correspondences, are modeled as sets of dynamic particles that are constrained to lie on a set of implicit surfaces. Sample positions are optimized by gradient descent on an energy function that balances the negative entropy of the distribution on each shape with the positive entropy of the ensemble of shapes. We also extend the method with a curvature-adaptive sampling strategy in order to better approximate the geometry of the objects. This paper presents the formulation; several synthetic examples in two and three dimensions; and an application to the statistical shape analysis of the caudate and hippocampus brain structures from two clinical studies.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service