Publication:
Extensions of Randomization-Based Methods for Causal Inference

No Thumbnail Available

Date

2015-04-20

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lee, Joseph Jiazong. 2015. Extensions of Randomization-Based Methods for Causal Inference. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Research Data

Abstract

In randomized experiments, the random assignment of units to treatment groups justifies many of the traditional analysis methods for evaluating causal effects. Specifying subgroups of units for further examination after observing outcomes, however, may partially nullify any advantages of randomized assignment when data are analyzed naively. Some previous statistical literature has treated all post-hoc analyses homogeneously as entirely invalid and thus uninterpretable. Alternative analysis methods and the extent of the validity of such analyses remain largely unstudied. Here Chapter 1 proposes a novel, randomization-based method that generates valid post-hoc subgroup p-values, provided we know exactly how the subgroups were constructed. If we do not know the exact subgrouping procedure, our method may still place helpful bounds on the significance level of estimated effects. Chapter 2 extends the proposed methodology to generate valid posterior predictive p-values for partially post-hoc subgroup analyses, i.e., analyses that compare existing experimental data --- from which a subgroup specification is derived --- to new, subgroup-only data. Both chapters are motivated by pharmaceutical examples in which subgroup analyses played pivotal and controversial roles. Chapter 3 extends our randomization-based methodology to more general randomized experiments with multiple testing and nuisance unknowns. The results are valid familywise tests that are doubly advantageous, in terms of statistical power, over traditional methods. We apply our methods to data from the United States Job Training Partnership Act (JTPA) Study, where our analyses lead to different conclusions regarding the significance of estimated JTPA effects. In all chapters, we investigate the operating characteristics and demonstrate the advantages of our methods through series of simulations.

Description

Other Available Sources

Keywords

Statistics

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories