Publication:
Mutations driving CLL and their evolution in progression and relapse

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Landau, D. A., E. Tausch, A. N. Taylor-Weiner, C. Stewart, J. G. Reiter, J. Bahlo, S. Kluth, et al. 2015. “Mutations driving CLL and their evolution in progression and relapse.” Nature 526 (7574): 525-530. doi:10.1038/nature15395. http://dx.doi.org/10.1038/nature15395.

Research Data

Abstract

SUMMARY Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. We identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized cancer drivers (RPS15, IKZF3) and collectively identify RNA processing and export, MYC activity and MAPK signaling as central pathways involved in CLL. Clonality analysis of this large dataset further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing datasets of clinically informative samples enable the discovery of novel cancer genes and the network of relationships between the driver events and their impact on disease relapse and clinical outcome.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories