Publication: Sequential Binary Gene-Ratio Tests Define a Novel Molecular Diagnostic Strategy for Malignant Pleural Mesothelioma
Open/View Files
Date
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Research Data
Abstract
Purpose To develop a standardized approach for molecular diagnostics, we used the gene-expression ratio bioinformatic technique to design a molecular signature to diagnose MPM from among other potentially confounding diagnoses and differentiate the epithelioid from the sarcomatoid histological subtype of MPM. In addition, we searched for pathways relevant in MPM in comparison to other related cancers to identify unique molecular features in MPM.
Experimental Design We performed microarray analysis on 113 specimens including MPMs and a spectrum of tumors and benign tissues comprising the differential diagnosis of MPM. We generated a sequential combination of binary gene-expression ratio tests able to discriminate MPM from other thoracic malignancies. We compared this method to other bioinformatic tools and validated this signature in an independent set of 170 samples. Functional enrichment analysis was performed to identify differentially expressed probes.
Results A sequential combination of gene-expression ratio tests was the best molecular approach to distinguish MPM from all the other samples. Bioinformatic and molecular validations showed that the sequential gene ratio tests were able to identify the MPM samples with high sensitivity and specificity. In addition, the gene-ratio technique was able to differentiate the epithelioid from the sarcomatoid type of MPM. Novel genes and pathways specifically activated in MPM were identified.
Conclusions New clinically relevant molecular tests have been generated using a small number of genes to accurately distinguish MPMs from other thoracic samples supporting our hypothesis that the gene-expression ratio approach could be a useful tool in the differential diagnosis of cancers.