Publication: Analysis of Scanned Probe Images for Magnetic Focusing
in Graphene
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bhandari, Sagar, Gil-Ho Lee, Philip Kim, and Robert M. Westervelt. 2017. “Analysis of Scanned Probe Images for Magnetic Focusingin Graphene.” Journal of Electronic Materials 46 (7) (February 21): 3837–3841. doi:10.1007/s11664-017-5350-y.
Research Data
Abstract
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.
Description
Other Available Sources
Keywords
Scanning probe microscopy theory, ballistic transport, graphene, simulation, magnetic focusing, electron trajectories
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service