Publication: Analysis of clinical decision support system malfunctions: a case series and survey
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Wright, A., T. T. Hickman, D. McEvoy, S. Aaron, A. Ai, J. M. Andersen, S. Hussain, et al. 2016. “Analysis of clinical decision support system malfunctions: a case series and survey.” Journal of the American Medical Informatics Association : JAMIA 23 (6): 1068-1076. doi:10.1093/jamia/ocw005. http://dx.doi.org/10.1093/jamia/ocw005.
Research Data
Abstract
Objective: To illustrate ways in which clinical decision support systems (CDSSs) malfunction and identify patterns of such malfunctions. Materials and Methods We identified and investigated several CDSS malfunctions at Brigham and Women’s Hospital and present them as a case series. We also conducted a preliminary survey of Chief Medical Information Officers to assess the frequency of such malfunctions. Results: We identified four CDSS malfunctions at Brigham and Women’s Hospital: (1) an alert for monitoring thyroid function in patients receiving amiodarone stopped working when an internal identifier for amiodarone was changed in another system; (2) an alert for lead screening for children stopped working when the rule was inadvertently edited; (3) a software upgrade of the electronic health record software caused numerous spurious alerts to fire; and (4) a malfunction in an external drug classification system caused an alert to inappropriately suggest antiplatelet drugs, such as aspirin, for patients already taking one. We found that 93% of the Chief Medical Information Officers who responded to our survey had experienced at least one CDSS malfunction, and two-thirds experienced malfunctions at least annually. Discussion CDSS malfunctions are widespread and often persist for long periods. The failure of alerts to fire is particularly difficult to detect. A range of causes, including changes in codes and fields, software upgrades, inadvertent disabling or editing of rules, and malfunctions of external systems commonly contribute to CDSS malfunctions, and current approaches for preventing and detecting such malfunctions are inadequate. Conclusion: CDSS malfunctions occur commonly and often go undetected. Better methods are needed to prevent and detect these malfunctions.
Description
Other Available Sources
Keywords
clinical decision support, electronic health records, safety, anomaly detection, machine learning
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service