Publication:
Antibiotic Resistance Increases with Local Temperature

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

MacFadden, Derek, Sarah McGough, David Fisman, Mauricio Santillana, and John Brownstein. 2017. “Antibiotic Resistance Increases with Local Temperature.” Open Forum Infectious Diseases 4 (Suppl 1): S179. doi:10.1093/ofid/ofx163.327. http://dx.doi.org/10.1093/ofid/ofx163.327.

Research Data

Abstract

Abstract Background: Antibiotic resistance is considered as one of our greatest emerging public health threats. Current understanding of the factors governing spread of antibiotic-resistant organisms and mechanisms among populations is limited. Methods: We explored the roles of local temperature, population density, and additional factors on the distribution of antibiotic resistance across the United States, using a database of regional antibiotic resistance that incorporates over 1.6 million bacterial pathogens from human clinical isolates over the years 2013–2015. Results: We identified that increasing local temperature as well as population density were associated with increasing antibiotic resistance in common pathogens. An increase in temperature of 10oC was associated with increases in antibiotic resistance of 4.2%, 2.2%, and 3.6% for the common pathogens Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The effect of temperature on antibiotic resistance was robust across almost all classes of antibiotics and pathogens and strengthened over time. Conclusion: These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and warming planet. Figure 1. Antibiotic resistance increases with increasing temperature. (A) A heatmap of mean normalized antibiotic resistance for E. coli for all antibiotics across the USA. (B) A heatmap of 30-year average minimum temperature (oC) across the USA. Disclosures All authors: No reported disclosures.

Description

Keywords

Poster Abstract

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories