Publication:
Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador

Thumbnail Image

Open/View Files

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley and Sons Inc.
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Roland, Alexandre B., Juan C. Santos, Bella C. Carriker, Stephanie N. Caty, Elicio E. Tapia, Luis A. Coloma, and Lauren A. O'Connell. 2017. “Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador.” Ecology and Evolution 7 (22): 9750-9762. doi:10.1002/ece3.3503. http://dx.doi.org/10.1002/ece3.3503.

Research Data

Abstract

Abstract Some South American poison frogs (Dendrobatidae) are chemically defended and use bright aposematic colors to warn potential predators of their unpalatability. Aposematic signals are often frequency‐dependent where individuals deviating from a local model are at a higher risk of predation. However, extreme diversity in the aposematic signal has been documented in poison frogs, especially in Oophaga. Here, we explore the phylogeographic pattern among color‐divergent populations of the Little Devil poison frog Oophaga sylvatica by analyzing population structure and genetic differentiation to evaluate which processes could account for color diversity within and among populations. With a combination of PCR amplicons (three mitochondrial and three nuclear markers) and genome‐wide markers from a double‐digested RAD (ddRAD) approach, we characterized the phylogenetic and genetic structure of 199 individuals from 13 populations (12 monomorphic and 1 polymorphic) across the O. sylvatica distribution. Individuals segregated into two main lineages by their northern or southern latitudinal distribution. A high level of genetic and phenotypic polymorphism within the northern lineage suggests ongoing gene flow. In contrast, low levels of genetic differentiation were detected among the southern lineage populations and support recent range expansions from populations in the northern lineage. We propose that a combination of climatic gradients and structured landscapes might be promoting gene flow and phylogenetic diversification. Alternatively, we cannot rule out that the observed phenotypic and genomic variations are the result of genetic drift on near or neutral alleles in a small number of genes.

Description

Keywords

amphibian, aposematism, dd, Dendrobatidae, Ecuador, gene flow, , phenotypic variation, population genomics

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories