Publication: Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Zebrowski, David C., Charlotte H. Jensen, Robert Becker, Fulvia Ferrazzi, Christina Baun, Svend Hvidsten, Søren P. Sheikh, Brian D. Polizzotti, Ditte C. Andersen, and Felix B. Engel. 2017. “Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation.” Scientific Reports 7 (1): 8362. doi:10.1038/s41598-017-08947-2. http://dx.doi.org/10.1038/s41598-017-08947-2.
Research Data
Abstract
After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after apical resection by cardiomyocyte proliferation. Thus, we tested the hypothesis that apical resection either inhibits, delays, or reverses cardiomyocyte centrosome disassembly and binucleation. Our data show that apical resection rather transiently accelerates centrosome disassembly as well as the rate of binucleation. Consistent with the nearly 2-fold increased rate of binucleation there was a nearly 2-fold increase in the number of cardiomyocytes in mitosis indicating that the majority of injury-induced cardiomyocyte cell cycle activity results in binucleation, not proliferation. Concurrently, cardiomyocytes undergoing cytokinesis from embryonic hearts exhibited midbody formation consistent with successful abscission, whereas those from 3 day-old cardiomyocytes after apical resection exhibited midbody formation consistent with abscission failure. Lastly, injured hearts failed to fully regenerate as evidenced by persistent scarring and reduced wall motion. Collectively, these data suggest that should a regenerative program exist in the newborn mammalian heart, it is quickly curtailed by developmental mechanisms that render cardiomyocytes post-mitotic.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service