Publication: Atmospheric deposition, CO2, and change in the land carbon sink
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Fernández-Martínez, M., S. Vicca, I. A. Janssens, P. Ciais, M. Obersteiner, M. Bartrons, J. Sardans, et al. 2017. “Atmospheric deposition, CO2, and change in the land carbon sink.” Scientific Reports 7 (1): 9632. doi:10.1038/s41598-017-08755-8. http://dx.doi.org/10.1038/s41598-017-08755-8.
Research Data
Abstract
Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service