Publication: Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Yang, N. J., M. J. Kauke, F. Sun, L. F. Yang, K. F. Maass, M. W. Traxlmayr, Y. Yu, et al. 2017. “Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins.” Nucleic Acids Research 45 (13): 7602-7614. doi:10.1093/nar/gkx546. http://dx.doi.org/10.1093/nar/gkx546.
Research Data
Abstract
Abstract Protein-based methods of siRNA delivery are capable of uniquely specific targeting, but are limited by technical challenges such as low potency or poor biophysical properties. Here, we engineered a series of ultra-high affinity siRNA binders based on the viral protein p19 and developed them into siRNA carriers targeted to the epidermal growth factor receptor (EGFR). Combined in trans with a previously described endosome-disrupting agent composed of the pore-forming protein Perfringolysin O (PFO), potent silencing was achieved in vitro with no detectable cytotoxicity. Despite concerns that excessively strong siRNA binding could prevent the discharge of siRNA from its carrier, higher affinity continually led to stronger silencing. We found that this improvement was due to both increased uptake of siRNA into the cell and improved pharmacodynamics inside the cell. Mathematical modeling predicted the existence of an affinity optimum that maximizes silencing, after which siRNA sequestration decreases potency. Our study characterizing the affinity dependence of silencing suggests that siRNA-carrier affinity can significantly affect the intracellular fate of siRNA and may serve as a handle for improving the efficiency of delivery. The two-agent delivery system presented here possesses notable biophysical properties and potency, and provide a platform for the cytosolic delivery of nucleic acids.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service