Publication:
Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex

Thumbnail Image

Open/View Files

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Orekhova, E. V., O. V. Sysoeva, J. F. Schneiderman, S. Lundström, I. A. Galuta, D. E. Goiaeva, A. O. Prokofyev, et al. 2018. “Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.” Scientific Reports 8 (1): 8451. doi:10.1038/s41598-018-26779-6. http://dx.doi.org/10.1038/s41598-018-26779-6.

Research Data

Abstract

Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories