Publication: Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth
Open/View Files
Date
2018
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Adam, Zachary R., Yayoi Hongo, H. James Cleaves, Ruiqin Yi, Albert C. Fahrenbach, Isao Yoda, and Masashi Aono. 2018. “Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth.” Scientific Reports 8 (1): 265. doi:10.1038/s41598-017-18483-8. http://dx.doi.org/10.1038/s41598-017-18483-8.
Research Data
Abstract
Water creates special problems for prebiotic chemistry, as it is thermodynamically favorable for amide and phosphodiester bonds to hydrolyze. The availability of alternative solvents with more favorable properties for the formation of prebiotic molecules on the early Earth may have helped bypass this so-called “water paradox”. Formamide (FA) is one such solvent, and can serve as a nucleobase precursor, but it is difficult to envision how FA could have been generated in large quantities or accumulated in terrestrial surface environments. We report here the conversion of aqueous acetonitrile (ACN) via hydrogen cyanide (HCN) as an intermediate into FA by γ-irradiation under conditions mimicking exposure to radioactive minerals. We estimate that a radioactive placer deposit could produce 0.1‒0.8 mol FA km−2 year−1. A uraninite fission zone comparable to the Oklo reactors in Gabon can produce 0.1‒1 mol m−2 year−1, orders of magnitude greater than other scenarios of FA production or delivery for which reaching sizeable concentrations of FA are problematic. Radioactive mineral deposits may be favorable settings for prebiotic compound formation through emergent geologic processes and FA-mediated organic chemistry.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service