Publication:
Metabolomics profiling reveals differential adaptation of major energy metabolism pathways associated with autophagy upon oxygen and glucose reduction

Thumbnail Image

Open/View Files

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Weckmann, Katja, Philip Diefenthäler, Marius W. Baeken, Kamran Yusifli, Christoph W. Turck, John M. Asara, Christian Behl, and Parvana Hajieva. 2018. “Metabolomics profiling reveals differential adaptation of major energy metabolism pathways associated with autophagy upon oxygen and glucose reduction.” Scientific Reports 8 (1): 2337. doi:10.1038/s41598-018-19421-y. http://dx.doi.org/10.1038/s41598-018-19421-y.

Research Data

Abstract

The ability of cells to rearrange their metabolism plays an important role in compensating the energy shortage and may provide cell survival. Our study focuses on identifing the important adaptational changes under the conditions of oxygen and glucose reduction. Employing mass spectrometry-based metabolomics in combination with biochemistry and microscopy techniques we identified metabolites, proteins and biomolecular pathways alterations in primary human IMR90 fibroblasts upon energy deficits. Multivariate statistical analyses revealed significant treatment-specific metabolite level and ratio alterations as well as major energy metabolism pathways like ‘glycolysis’, ‘pentose phosphate pathway’, ‘mitochondrial electron transport chain’ and ‘protein biosynthesis (amino acids)’ indicating an activation of catabolism and reduction of anabolism as important mechanisms of adaptation towards a bioenergetic demand. A treatment-specific induction of the autophagic and mitophagic degradation activity upon oxygen reduction, glucose reduction as well as oxygen-glucose reduction further supports our results. Therefore, we suggest that the observed alterations represent an adaptive response in order to compensate for the cells’ bioenergetics needs that ultimately provide cell survival.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories