Publication:
Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci

Thumbnail Image

Open/View Files

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Canver, M. C., S. Lessard, L. Pinello, Y. Wu, Y. Ilboudo, E. N. Stern, A. J. Needleman, et al. 2017. “Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.” Nature genetics 49 (4): 625-634. doi:10.1038/ng.3793. http://dx.doi.org/10.1038/ng.3793.

Research Data

Abstract

Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants from genome-wide association studies largely cluster in regulatory DNA. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating mutagenesis libraries with single or combinatorial nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, a locus associated with red blood cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false positive regions, which emphasizes the importance of off-target analysis in design of saturating mutagenesis experiments. Taken together, these data establish a widely applicable high-throughput and high-resolution methodology to reliably identify minimal functional sequences within large regions of disease- and trait-associated DNA.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories