Publication:
Nucleotide Signaling and Cutaneous Mechanisms of Pain Transduction

No Thumbnail Available

Date

2009-04

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dussor, G., H.R. Koerber, Anne Oaklander, F.L. Rice, D.C. Molliver. "Nucleotide Signaling and Cutaneous Mechanisms of Pain Transduction." Brain Research Reviews 60, no. 1 (2009): 24-35. DOI: 10.1016/j.brainresrev.2008.12.013

Research Data

Abstract

Sensory neurons that innervate the skin provide critical information about physical contact between the organism and the environment, including information about potentially-damaging stimuli that give rise to the sensation of pain. These afferents also contribute to the maintenance of tissue homeostasis, inflammation and wound healing, while sensitization of sensory afferents after injury results in painful hypersensitivity and protective behavior. In contrast to the traditional view of primary afferent terminals as the sole site of sensory transduction, recent reports have lead to the intriguing idea that cells of the skin play an active role in the transduction of sensory stimuli. The search for molecules that transduce different types of sensory stimuli (mechanical, heat, chemical) at the axon terminal has yielded a wide range of potential effectors, many of which are expressed by keratinocytes as well as neurons. Emerging evidence underscores the importance of nucleotide signaling through P2X ionotropic and P2Y metabotropic receptors in pain processing, and implicates nucleotide signaling as a critical form of communication between cells of the skin, immune cells and sensory neurons. It is of great interest to determine whether pathological changes in these mechanisms contribute to chronic pain in human disease states such as complex regional pain syndrome (CRPS). This review discusses recent advances in our understanding of communication mechanisms between cells of the skin and sensory axons in the transduction of sensory input leading to pain.

Description

Keywords

Research Subject Categories::MEDICINE::Morphology, cell biology, pathology::Cell biology::Neuroscience

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories