Publication:
Fast parameter estimation in loss tomography for networks of general topology

Thumbnail Image

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Mathematical Statistics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Deng, Ke, Yang Li, Weiping Zhu, and Jun S. Liu. 2016. “Fast Parameter Estimation in Loss Tomography for Networks of General Topology.” The Annals of Applied Statistics 10 (1) (March): 144–164. doi:10.1214/15-aoas883.

Research Data

Abstract

As a technique to investigate link-level loss rates of a computer network with low operational cost, loss tomography has received considerable attentions in recent years. A number of parameter estimation methods have been proposed for loss tomography of networks with a tree structure as well as a general topological structure. However, these methods suffer from either high computational cost or insufficient use of information in the data. In this paper, we provide both theoretical results and practical algorithms for parameter estimation in loss tomography. By introducing a group of novel statistics and alternative parameter systems, we find that the likelihood function of the observed data from loss tomography keeps exactly the same mathematical formulation for tree and general topologies, revealing that networks with different topologies share the same mathematical nature for loss tomography. More importantly, we discover that a reparametrization of the likelihood function belongs to the standard exponential family, which is convex and has a unique mode under regularity conditions. Based on these theoretical results, novel algorithms to find the MLE are developed. Compared to existing methods in the literature, the proposed methods enjoy great computational advantages.

Description

Other Available Sources

Keywords

Network tomography, loss tomography, general topology, likelihood equation, pattern-collapsed EM algorithm

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories