Publication: Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis
Open/View Files
Date
2018
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Somogyi, Aleksandra, Anton Petcherski, Benedikt Beckert, Mylene Huebecker, David A. Priestman, Antje Banning, Susan L. Cotman, Frances M. Platt, Mika O. Ruonala, and Ritva Tikkanen. 2018. “Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis.” International Journal of Molecular Sciences 19 (2): 625. doi:10.3390/ijms19020625. http://dx.doi.org/10.3390/ijms19020625.
Research Data
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.
Description
Other Available Sources
Keywords
Batten disease, neuronal ceroid lipofuscinosis, CLN3, lysosomal storage disorders, glycosphingolipids, gangliosides
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service