Publication: Fast, Low-Ionization Emission Regions of the Planetary Nebula M2-42
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Danehkar, A., Q. A. Parker, and W. Steffen. 2016. “Fast, Low-Ionization Emission Regions of the Planetary Nebula M2-42.” The Astronomical Journal 151 (2) (January 28): 38. doi:10.3847/0004-6256/151/2/38.
Research Data
Abstract
Spatially resolved observations of the planetary nebula M2-42 (PN G008.2-04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N II] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s-1 is measured from the spectrum integrated over the main shell. However, the deprojected velocities of the jets are found to be in the range of 80-160 km s-1 with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm-3, is five times lower than that of the main shell, 3150 cm-3, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service