Publication:
Prediction Model and Risk Stratification Tool for Survival in Patients With CKD

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Goldfarb-Rumyantzev, Alexander S., Shiva Gautam, Ning Dong, and Robert S. Brown. 2017. “Prediction Model and Risk Stratification Tool for Survival in Patients With CKD.” Kidney International Reports 3 (2): 417-425. doi:10.1016/j.ekir.2017.11.010. http://dx.doi.org/10.1016/j.ekir.2017.11.010.

Research Data

Abstract

Introduction: Because chronic kidney disease (CKD) adversely affects survival, prediction of mortality risk should help to identify individuals requiring therapeutic intervention. The goal of this project was to construct and to validate a risk scoring system and prediction model of the probability of 2-year mortality in a CKD population. Methods: We applied the Woodpecker approach to develop prediction equations using linear, exponential, and combined models. A risk indicator R on a scale of 0 to 10 was calculated as follows: starting with 0, add 0.048 for each year of age above 20, 0.45 for male sex, 0.49 for each stage of CKD over stage 2, 1.04 for proteinuria, 0.72 for smoking history, and 0.49 for each significant comorbidity up to 5. Results: Using R to predict 2-year mortality, the model yielded an area under the receiver operating characterisic curve of 0.83 (95% confidence interval = 0.81−0.86) with 5062 subjects with CKD ≥stage 2 from a National Health and Nutrition Examination Survey cohort (1999−2004) having a 3.2% 2-year mortality. The combined expression offered results closest to most actual outcomes for the entire population and for each CKD stage. For those patients with higher risk (R ≥ 4−5, >5−6, and >6), the predicted 2-year mortality rates were 3.8%, 6.4%, and 13.0%, respectively, compared to observed mortality rates of 2.7%, 4.5%, and 13.3%. Conclusion: The risk stratification tool and prediction model of 2-year mortality demonstrated good performance and may be used in clinical practice to quantify the risk of death for individual patients with CKD.

Description

Keywords

CKD, epidemiology, mortality, outcome, prediction, survival

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories