Publication:
Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies

Thumbnail Image

Open/View Files

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zhu, Zhaozhong, Verneri Anttila, Jordan W. Smoller, and Phil H. Lee. 2018. “Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies.” PLoS ONE 13 (3): e0193256. doi:10.1371/journal.pone.0193256. http://dx.doi.org/10.1371/journal.pone.0193256.

Research Data

Abstract

Advances in recent genome wide association studies (GWAS) suggest that pleiotropic effects on human complex traits are widespread. A number of classic and recent meta-analysis methods have been used to identify genetic loci with pleiotropic effects, but the overall performance of these methods is not well understood. In this work, we use extensive simulations and case studies of GWAS datasets to investigate the power and type-I error rates of ten meta-analysis methods. We specifically focus on three conditions commonly encountered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) characterization of trait-specific association; and (3) inflated correlation of GWAS due to overlapping samples. Although the statistical power is highly variable under distinct study conditions, we found the superior power of several methods under diverse heterogeneity. In particular, classic fixed-effects model showed surprisingly good performance when a variant is associated with more than a half of study traits. As the number of traits with null effects increases, ASSET performed the best along with competitive specificity and sensitivity. With opposite directional effects, CPASSOC featured the first-rate power. However, caution is advised when using CPASSOC for studying genetically correlated traits with overlapping samples. We conclude with a discussion of unresolved issues and directions for future research.

Description

Keywords

Mathematical and Statistical Techniques, Statistical Methods, Meta-Analysis, Physical Sciences, Mathematics, Statistics (Mathematics), Biology and Life Sciences, Computational Biology, Genome Analysis, Genome-Wide Association Studies, Genetics, Genomics, Human Genetics, Genetic Loci, Probability Theory, Probability Distribution, Normal Distribution, Simulation and Modeling, Genomics Statistics, Medicine and Health Sciences, Pulmonology, Asthma

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories