Publication:
Clonal Architecture of CXCR4 WHIM-Like Mutations in Waldenström Macroglobulinaemia

No Thumbnail Available

Date

2016-03

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Xu, Lian, Zachary Hunter, Nicholas Tsakmaklis, Yang Cao, Guang Yang, Jie Chen, Xia Liu et al. "Clonal Architecture of CXCR4 WHIM-Like Mutations in Waldenström Macroglobulinaemia." British Journal of Haematology 172, no. 5 (2016): 735-744. DOI: 10.1111/bjh.13897

Research Data

Abstract

CXCR4WHIM somatic mutations are distinctive to Waldenstrom Macroglobulinaemia (WM), and impact disease presentation and treatment outcome. The clonal architecture of CXCR4WHIM mutations remains to be delineated. We developed highly sensitive allele-specific polymerase chain reaction(AS-PCR) assays for detecting the most common CXCR4WHIM mutations (CXCR4S338X C>A and C>G) in WM. The AS-PCR assays detected CXCR4S338X mutations in WM and IgM monoclonal gammopathy of unknown significance (MGUS) patients not revealed by Sanger sequencing. By combined AS-PCR and Sanger sequencing, CXCR4WHIM mutations were identified in 44/102 (43%), 21/62 (34%), 2/12 (17%) and 1/20 (5%)untreated WM, previously treated WM, IgM MGUS and marginal zonelymphoma patients, respectively, but no chronic lymphocytic leukaemia, multiple myeloma, non-IgM MGUS patients or healthy donors. Cancer cellfraction analysis in WM and IgM MGUS patients showed CXCR4S338X mutations were primarily subclonal, with highly variable clonal distribution(median 35·1%, range 1·2–97·5%). Combined AS-PCR and Sangersequencing revealed multiple CXCR4WHIM mutations in many individual WM patients, including homozygous and compound heterozygous mutations validated by deep RNA sequencing. The findings show thatCXCR4WHIM mutations are more common in WM than previously revealed, and are primarily subclonal, supporting their acquisition after MYD88L265P in WM oncogenesis. The presence of multiple CXCR4WHIM mutations within individual WM patients may be indicative of targeted CXCR4 genomic instability.

Description

Keywords

Research Subject Categories::MEDICINE::Dermatology and venerology,clinical genetics, internal medicine::Internal medicine::Haematology

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories