Publication:
A comparison of passive and active estimates of sleep in a cohort with schizophrenia

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Staples, Patrick, John Torous, Ian Barnett, Kenzie Carlson, Luis Sandoval, Matcheri Keshavan, and Jukka-Pekka Onnela. 2017. “A comparison of passive and active estimates of sleep in a cohort with schizophrenia.” NPJ Schizophrenia 3 (1): 37. doi:10.1038/s41537-017-0038-0. http://dx.doi.org/10.1038/s41537-017-0038-0.

Research Data

Abstract

Sleep abnormalities are considered an important feature of schizophrenia, yet convenient and reliable sleep monitoring remains a challenge. Smartphones offer a novel solution to capture both self-reported and objective measures of sleep in schizophrenia. In this three-month observational study, 17 subjects with a diagnosis of schizophrenia currently in treatment downloaded Beiwe, a platform for digital phenotyping, on their personal Apple or Android smartphones. Subjects were given tri-weekly ecological momentary assessments (EMAs) on their own smartphones, and passive data including accelerometer, GPS, screen use, and anonymized call and text message logs was continuously collected. We compare the in-clinic assessment of sleep quality, assessed with the Pittsburgh Sleep Questionnaire Inventory (PSQI), to EMAs, as well as sleep estimates based on passively collected accelerometer data. EMAs and passive data classified 85% (11/13) of subjects as exhibiting high or low sleep quality compared to the in-clinic assessments among subjects who completed at least one in-person PSQI. Phone-based accelerometer data used to infer sleep duration was moderately correlated with subject self-assessment of sleep duration (r = 0.69, 95% CI 0.23–0.90). Active and passive phone data predicts concurrent PSQI scores for all subjects with mean average error of 0.75 and future PSQI scores with a mean average error of 1.9, with scores ranging from 0–14. These results suggest sleep monitoring via personal smartphones is feasible for subjects with schizophrenia in a scalable and affordable manner.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories