Publication:
ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lagares, D., P. Ghassemi-Kakroodi, C. Tremblay, A. Santos, C. K. Probst, A. Franklin, D. M. Santos, et al. 2017. “ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis.” Nature medicine 23 (12): 1405-1415. doi:10.1038/nm.4419. http://dx.doi.org/10.1038/nm.4419.

Research Data

Abstract

Maladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodelling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however the molecular mediators of myofibroblast activation remain to be fully identified. Here we identify soluble ephrin-B2 as a novel pro-fibrotic mediator in lung and skin fibrosis. We provide molecular, functional and translational evidence that the ectodomain of membrane-bound ephrin-B2 is shed from fibroblasts into the alveolar airspace after lung injury. Shedding of soluble ephrin-B2 (sEphrin-B2) promotes fibroblast chemotaxis and activation via EphB3/EphB4 receptor signaling. We found that mice lacking ephrin-B2 in fibroblasts are protected from skin and lung fibrosis and that a distintegrin and metalloproteinase 10 (ADAM10) is the major ephrin-B2 sheddase in fibroblasts. ADAM10 is induced by transforming growth factor-β1 (TGF-β1), and ADAM10-mediated sEphrin-B2 generation is required for TGF-β1–induced myofibroblast activation. Pharmacological inhibition of ADAM10 reduces sEphrin-B2 levels in bronchoalveolar lavage and prevents lung fibrosis in mice. Consistent with the mouse data, ADAM10/sEphrin-B2 signaling is upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. These results uncover a new molecular mechanism of tissue fibrogenesis and identify sEphrin-B2, its receptors Eph3/Eph4, and ADAM10 as potential therapeutic targets in the treatment of fibrotic diseases.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories