Publication:
Risk alleles of genes with monoallelic expression are enriched in gain-of-function variants and depleted in loss-of-function variants for neurodevelopmental disorders

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Savova, Virginia, Svetlana Vinogradova, Danielle Pruss, Alexander A. Gimelbrant, and Lauren A. Weiss. 2017. “Risk alleles of genes with monoallelic expression are enriched in gain-of-function variants and depleted in loss-of-function variants for neurodevelopmental disorders.” Molecular psychiatry 22 (12): 1785-1794. doi:10.1038/mp.2017.13. http://dx.doi.org/10.1038/mp.2017.13.

Research Data

Abstract

Over 3,000 human genes can be expressed from a single allele in one cell, and from the other allele – or both – in neighboring cells. Little is known about the consequences of this epigenetic phenomenon, monoallelic expression (MAE). We hypothesized that MAE increases expression variability, with potential impact on human disease. Here, we use a chromatin signature to infer MAE for genes in lymphoblastoid cell lines and human fetal brain tissue. We confirm that across clones, MAE status correlates with expression level, and that in human tissue datasets, MAE genes show increased expression variability. We then compare mono- and biallelic genes at three distinct scales. In the human population, we observe that genes with polymorphisms influencing expression variance are more likely to be MAE (P < 1.1 × 10−6). At the trans-species level, we find gene expression differences and directional selection between humans and chimpanzees more common among MAE genes (P < 0.05). Extending to human disease, we show that MAE genes are underrepresented in neurodevelopmental CNVs (P < 2.2×10−10) suggesting that pathogenic variants acting via expression level are less likely to involve MAE genes. Using neuropsychiatric SNP and SNV data, we see that genes with pathogenic expression-altering or loss-of-function variants are less likely MAE (P < 7.5×10−11) and genes with only missense or gain-of-function variants are more likely MAE (P < 1.4×10−6). Together, our results suggest that MAE genes tolerate a greater range of expression level than BAE genes and this information may be useful in prediction of pathogenicity.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories