Publication:
Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53

Thumbnail Image

Open/View Files

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ou, W., M. Lu, G. Eilers, H. Li, J. Ding, X. Meng, Y. Wu, et al. 2016. “Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53.” British Journal of Cancer 115 (10): 1253-1263. doi:10.1038/bjc.2016.331. http://dx.doi.org/10.1038/bjc.2016.331.

Research Data

Abstract

Background: Improved mesothelioma patient survival will require development of novel and more effective pharmacological interventions. TP53 genomic mutations are uncommon in mesothelioma, and recent data indicate that p53 remains functional, and therefore is a potential therapeutic target in these cancers. In addition, the tumour suppressor NF2 is inactivated by genomic mechanisms in more than 80% of mesothelioma, causing upregulation of FAK activity. Because FAK is a negative regulator of p53, NF2 regulation of FAK–p53–MDM2 signalling loops were evaluated. Methods: Interactions of FAK–p53 or NF2–FAK were evaluated by phosphotyrosine-p53 immunoaffinity purification and tandem mass spectrometry, and p53, FAK, and NF2 immunoprecipitations. Activation and/or expression of FAK, p53, and NF2 were also evaluated in mesotheliomas. Effects of combination MDM2 and FAK inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, expression of cell cycle checkpoints, and cell cycle alterations. Results: We observed constitutive activation of FAK, a known negative regulator of p53, in each of 10 mesothelioma cell lines and each of nine mesothelioma surgical specimens, and FAK was associated with p53 in five of five mesothelioma cell lines. In four mesotheliomas with wild-type p53, FAK silencing by RNAi induced expression and phosphorylation of p53. However, FAK regulation of mesothelioma proliferation was not restricted to p53-dependent pathways, as demonstrated by immunoblots after FAK knockdown in JMN1B mesothelioma cells, which have mutant/inactivated p53, compared with four mesothelioma cell lines with nonmutant p53. Additive effects were obtained through a coordinated reactivation of p53, by FAK knockdown/inhibition and MDM2 inhibition, as demonstrated by immunoblots, cell viability, and cell-cycle analyses, showing increased p53 expression, apoptosis, anti-proliferative effects, and cell-cycle arrest, as compared with either intervention alone. Our results also indicate that NF2 regulates the interaction of FAK–p53 and MDM2–p53. Conclusions: These findings highlight novel therapeutic opportunities in mesothelioma.

Description

Keywords

FAK, p53, MDM2, NF2, mesothelioma

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories