Publication:
Misato underlies visceral myopathy in Drosophila

Thumbnail Image

Open/View Files

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group UK
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Min, Soohong, Woongchang Yoon, Hyunho Cho, and Jongkyeong Chung. 2017. “Misato underlies visceral myopathy in Drosophila.” Scientific Reports 7 (1): 17700. doi:10.1038/s41598-017-17961-3. http://dx.doi.org/10.1038/s41598-017-17961-3.

Research Data

Abstract

Genetic mechanisms for the pathogenesis of visceral myopathy (VM) have been rarely demonstrated. Here we report the visceral role of misato (mst) in Drosophila and its implications for the pathogenesis of VM. Depletion of mst using three independent RNAi lines expressed by a pan-muscular driver elicited characteristic symptoms of VM, such as abnormal dilation of intestinal tracts, reduced gut motility, feeding defects, and decreased life span. By contrast, exaggerated expression of mst reduced intestine diameters, but increased intestinal motilities along with thickened muscle fibers, demonstrating a critical role of mst in the visceral muscle. Mst expression was detected in the adult intestine with its prominent localization to actin filaments and was required for maintenance of intestinal tubulin and actomyosin structures. Consistent with the subcellular localization of Mst, the intestinal defects induced by mst depletion were dramatically rescued by exogenous expression of an actin member. Upon ageing the intestinal defects were deteriorative with marked increase of apoptotic responses in the visceral muscle. Taken together, we propose the impairment of actomyosin structures induced by mst depletion in the visceral muscle as a pathogenic mechanism for VM.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories