Publication:
Accounting for Uncertainty in Confounder and Effect Modifier Selection When Estimating Average Causal Effects in Generalized Linear Models

Thumbnail Image

Date

2015-04-20

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Wang, Chi, Francesca Dominici, Giovanni Parmigiani, and Corwin Matthew Zigler. 2015. “Accounting for Uncertainty in Confounder and Effect Modifier Selection When Estimating Average Causal Effects in Generalized Linear Models.” Biometrics 71 (3): 654–65. https://doi.org/10.1111/biom.12315.

Research Data

Abstract

Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661-671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797-2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100-150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.

Description

Other Available Sources

Keywords

General Biochemistry, Genetics and Molecular Biology, Statistics and Probability, General Immunology and Microbiology, Applied Mathematics, General Agricultural and Biological Sciences, General Medicine

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories