Publication: Stochastic modeling of cell growth with symmetric or asymmetric division
No Thumbnail Available
Open/View Files
Date
2016
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Marantan, Andrew, and Ariel Amir. 2016. “Stochastic Modeling of Cell Growth with Symmetric or Asymmetric Division.” Physical Review E 94 (1). https://doi.org/10.1103/physreve.94.012405.
Research Data
Abstract
We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service