Publication:
Scaling rules for diffusive drug delivery in tumor and normal tissues

No Thumbnail Available

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Baish, James W., Triantafyllos Stylianopoulos, Ryan M. Lanning, Walid S. Kamoun, Dai Fukumura, Lance L. Munn, and Rakesh K. Jain. 2011. “Scaling Rules for Diffusive Drug Delivery in Tumor and Normal Tissues.” Proceedings of the National Academy of Sciences 108 (5): 1799–1803. doi:10.1073/pnas.1018154108.

Research Data

Abstract

Delivery of blood-borne molecules and nanoparticles from the vasculature to cells in the tissue differs dramatically between tumor and normal tissues due to differences in their vascular architectures. Here we show that two simple measures of vascular geometry-delta(max) and lambda-readily obtained from vascular images, capture these differences and link vascular structure to delivery in both tissue types. The longest time needed to bring materials to their destination scales with the square of delta(max), the maximum distance in the tissue from the nearest blood vessel, whereas., a measure of the shape of the spaces between vessels, determines the rate of delivery for shorter times. Our results are useful for evaluating how new therapeutic agents that inhibit or stimulate vascular growth alter the functional efficiency of the vasculature and more broadly for analysis of diffusion in irregularly shaped domains.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories