Publication: Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model
No Thumbnail Available
Open/View Files
Date
2011
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Boeke, Nicholas L., Julian D. Marshall, Sergio Alvarez, Kelly V. Chance, Alan Fried, Thomas P. Kurosu, Bernhard Rappenglück, et al. 2011. “Formaldehyde Columns from the Ozone Monitoring Instrument: Urban versus Background Levels and Evaluation Using Aircraft Data and a Global Model.” Journal of Geophysical Research 116 (D5). https://doi.org/10.1029/2010jd014870.
Research Data
Abstract
We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (Omega(HCHO)) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI Omega(HCHO) correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived Omega(HCHO) (-17% where Omega(HCHO) > 5 x 10(15) molecules cm(-2)) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional Omega(HCHO) variability across the United States, smaller anthropogenic Omega(HCHO) gradients are detectable at finer spatial scales (similar to 20-200 km) near many urban areas.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service