Publication: Young Stellar Populations around SN 1987A
No Thumbnail Available
Open/View Files
Date
2000
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Astronomical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Panagia, Nino, Martino Romaniello, Salvatore Scuderi, and Robert P. Kirshner. 2000. “Young Stellar Populations around SN 1987A.” The Astrophysical Journal 539 (1): 197–208. https://doi.org/10.1086/309212.
Research Data
Abstract
We present the first results of a study of the stellar population in a region of 30 pc radius around SN 1987A, based on an ana ysis of multiband Hubble Space Telescope (HST) WFPC2 images. The effective temperature, radius and, possibly, reddening of each star were determined by fitting the measured broadband magnitudes to the ones calculated with model atmospheres. In particular, we have determined effective temperatures and bolometric luminosities for 21,995 stars, and for a subsample of 2510 stars we also determined individual reddening corrections. In addition, we have identified all stars with Ha equivalent widths in excess of 8 Angstrom a total of 492 stars. An inspection of the H-R diagram reveals the presence of several generations of young stars, with ages between 1 and 150 Myr, superposed on a much older field population (0.6-6 Gyr). A substantial fraction of young stars with ages around 12 Myr make up the stellar generation coeval to SN 1987A progenitor. The youngest stars in the held appear to be strong-line T Tauri stars, identified an the basis of their conspicuous (W-eq > 8 Angstrom) H alpha excesses. This constitute the first positive detection of low-mass (about 1-2 M.) pre-mam-sequence (PMS) stars outside the Milky Way. Their positions in the H-R diagram appear to require that star formation in the LMC occurs with accretion rates about 10 times higher than in the Milky Way, i.e., similar to 10(-4) M. yr(-1). SN 1987A appears to belong to a loose, young cluster 12 +/- 2 Myr old, in which the slope of the present mass function is almost identical to Salpeter's, i.e., Gamma = d log N/d log M similar or equal to - 1.25 for masses above 3 M., but becomes much Batter for lower masses, i.e., Gamma similar or equal to -0.5. On a large scale, we find that the spatial distributions of massive r tars and low-mass PMS stars are conclusively different, indicating that different star formation processes operate for high- and low-mass stars. This results casts doubts on the validity of an initial mass function (IMF) concept on a small scale (say, less than 10 pc). Moreover, it appears that a determination of the low-mass end IMF in the LMC requires an explicit identification of PMS stars. A preliminary analysis, done for the whole held as a single entity, shows that the IMF slope for the young population present over :he entire region is steeper than Gamma similar or equal to -1.7.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service