Publication:
Histone variants and cellular plasticity

No Thumbnail Available

Date

2015-09

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Santoro, Stephen W, Catherine Dulac. "Histone variants and cellular plasticity." Trends in Genetics 31, no. 9 (2015): 516-527. DOI: 10.1016/j.tig.2015.07.005

Research Data

Abstract

The broad diversity of cell types within vertebrates arises from a unique genetic blueprint by combining intrinsic cellular information with developmental and other extrinsic signals. Lying at the interface between cellular signals and the DNA is chromatin, a dynamic nucleoprotein complex that helps mediate gene regulation. The most basic subunit of chromatin, the nucleosome, consists of DNA wrapped around histones, a set of proteins that play critical roles as scaffolding molecules and regulators of gene expression. Growing evidence indicates that canonical histones are commonly replaced by protein variants prior to and during cellular transitions. Here we highlight exciting new results suggesting that histone variants are essential players in the control of cellular plasticity during development and in the adult nervous system.

Description

Keywords

Genetics

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories