Publication:
Theory and application of Fermi pseudo-potential in one dimension

No Thumbnail Available

Date

2002

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Wu, Tai Tsun, and Ming Lun Yu. 2002. “Theory and Application of Fermi Pseudo-Potential in One Dimension.” Journal of Mathematical Physics 43 (12): 5949–76. https://doi.org/10.1063/1.1519940.

Research Data

Abstract

The theory of interaction at one point is developed for the one-dimensional Schrodinger equation. In analog with the three-dimensional case, the resulting interaction is referred to as the Fermi pseudo-potential. The dominant feature of this one-dimensional problem comes from the fact that the real line becomes disconnected when one point is removed. The general interaction at one point is found to be the sum of three terms, the well-known delta-function potential and two Fermi pseudo-potentials, one odd under space reflection and the other even. The odd one gives the proper interpretation for the delta'(x) potential, while the even one is unexpected and more interesting. Among the many applications of these Fermi pseudo-potentials, the simplest one is described. It consists of a superposition of the delta-function potential and the even pseudo-potential applied to two-channel scattering. This simplest application leads to a model of the quantum memory, an essential component of any quantum computer.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories