Publication:
Melanoma growth is reduced in fat-1 transgenic mice: Impact of omega-6/omega-3 essential fatty acids

No Thumbnail Available

Date

2006

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Xia, S., Y. Lu, J. Wang, C. He, S. Hong, C. N. Serhan, and J. X. Kang. 2006. “Melanoma Growth Is Reduced in Fat-1 Transgenic Mice: Impact of Omega-6/Omega-3 Essential Fatty Acids.” Proceedings of the National Academy of Sciences 103 (33): 12499–504. https://doi.org/10.1073/pnas.0605394103.

Research Data

Abstract

An important nutritional question as to whether the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids plays a role in tumorigenesis remains to be clarified in well qualified experimental models. The recently engineered fat-1 mice, which can convert n-6 to n-3 fatty acids and have a balanced ratio of n-6 to n-3 fatty acids in their tissues and organs independent of diet, allow carefully controlled studies to be performed in the absence of potential confounding factors of diet and therefore are a useful model for elucidating the role of n-6/n-3 fatty acid ratio in tumorigenesis. We implanted mouse melanoma B16 cells into transgenic and WT littermates and examined the incidence of tumor formation and tumor growth rate. The results showed a dramatic reduction of melanoma formation and growth in fat-1 transgenic mice. The level of n-3 fatty acids and their metabolite prostaglandin E3 (IRGEA were much higher (but the n-6/n-3 ratio is much lower) in the tumor and surrounding tissues of fat-1 mice than that of WT animals. The phosphatase and tensin homologue deleted on the chromosome 10 (PTEN) gene was significantly up-regulated in the fat-1 mice. In vitro experiments showed that addition of the n-3 fatty acid eicosapentaenoic acid or PGE(3) inhibited the growth of B16 cell line and increased the expression of PTEN, which could be partially attenuated by inhibition of PGE(3) production, suggesting that PGE(3) may act as an antitumor mediator. These data demonstrate an anticancer (antimelanoma) effect of n-3 fatty acids through, at least in part, activation of PTEN pathway mediated by PGE(3).

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories