Publication:
Designing evanescent optical interactions to control the expression of Casimir forces in optomechanical structures

No Thumbnail Available

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Rodriguez, Alejandro W., David Woolf, Pui-Chuen Hui, Eiji Iwase, Alexander P. McCauley, Federico Capasso, Marko Loncar, and Steven G. Johnson. 2011. “Designing Evanescent Optical Interactions to Control the Expression of Casimir Forces in Optomechanical Structures.” Applied Physics Letters 98 (19): 194105. https://doi.org/10.1063/1.3589119.

Research Data

Abstract

We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above enable all-optical control and actuation of stiction effects induced by the Casimir force. In this way, one can control how the Casimir force is expressed in the mechanical dynamics of the membrane, not by changing the Casimir force directly but by optically modifying the geometry and counteracting the mechanical spring constant to bring the system in or out of regimes where Casimir physics dominate. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories