Publication: Reducing noise in moving-grid codes with strongly-centroidal Lloyd mesh regularization
No Thumbnail Available
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Mocz, Philip, Mark Vogelsberger, Rüdiger Pakmor, Shy Genel, Volker Springel, and Lars Hernquist. 2015. “Reducing Noise in Moving-Grid Codes with Strongly-Centroidal Lloyd Mesh Regularization.” Monthly Notices of the Royal Astronomical Society 452 (4): 3853–62. https://doi.org/10.1093/mnras/stv1598.
Research Data
Abstract
A method for improving the accuracy of hydrodynamical codes that use a moving Voronoi mesh is described. Our scheme is based on a new regularization scheme that constrains the mesh to be centroidal to high precision while still allowing the cells to move approximately with the local fluid velocity, thereby retaining the quasi-Lagrangian nature of the approach. Our regularization technique significantly reduces mesh noise that is attributed to changes in mesh topology and deviations from mesh regularity. We demonstrate the advantages of our method on various test problems, and note in particular improvements obtained in handling shear instabilities, mixing, and in angular momentum conservation. Calculations of adiabatic jets in which shear excites Kelvin-Helmholtz instability show reduction of mesh noise and entropy generation. In contrast, simulations of the collapse and formation of an isolated disc galaxy are nearly unaffected, showing that numerical errors due to the choice of regularization do not impact the outcome in this case.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service