Publication:
Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes

No Thumbnail Available

Date

2013

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Sądowski, Aleksander, Ramesh Narayan, Robert Penna, and Yucong Zhu. 2013. “Energy, Momentum and Mass Outflows and Feedback from Thick Accretion Discs around Rotating Black Holes.” Monthly Notices of the Royal Astronomical Society 436 (4): 3856–74. https://doi.org/10.1093/mnras/stt1881.

Research Data

Abstract

Using long-duration general relativistic magnetohydrodynamic simulations of radiatively inefficient accretion discs, the energy, momentum and mass outflow rates from such systems are estimated. Outflows occur via two fairly distinct modes: a relativistic jet and a subrelativistic wind. The jet power depends strongly on the black hole spin and on the magnetic flux at the horizon. Unless these are very small, the energy output in the jet dominates over that in the wind. For a rapidly spinning black hole accreting in the magnetically arrested limit, it is confirmed that jet power exceeds the total rate of accretion of rest mass energy. However, because of strong collimation, the jet probably does not have a significant feedback effect on its immediate surroundings. The power in the wind is more modest and shows a weaker dependence on black hole spin and magnetic flux. Nevertheless, because the wind subtends a large solid angle, it is expected to provide efficient feedback on a wide range of scales inside the host galaxy. Empirical formulae are obtained for the energy and momentum outflow rates in the jet and the wind.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories