Publication: An Immune Cell Signature of Bacterial Sepsis
No Thumbnail Available
Open/View Files
Date
2020-02-17
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Reyes, Miguel, Michael R. Filbin, Roby P. Bhattacharyya, Kianna Billman, Thomas Eisenhaure, Deborah T. Hung, Bruce D. Levy, et al. 2020. βAn Immune-Cell Signature of Bacterial Sepsis.β Nature Medicine 26 (3): 333β40.
Research Data
Abstract
Dysregulation of the immune response to bacterial infection can lead to sepsis, a condition with high mortality. Multiple whole-blood gene expression studies have defined sepsis-associated molecular signatures but did not resolve changes in transcriptional states of specific cell types. Here, we used single-cell RNA sequencing to profile the blood of patients with sepsis (n = 29) across three clinical cohorts with corresponding controls (n = 36). We profiled total peripheral blood mononuclear cells (PBMCs, 106,545 cells) and dendritic cells (19,806 cells) across all patients and, based on clustering of their gene expression profiles, defined 16 immune cell states. We identified a unique CD14+ monocyte state that is expanded in septic patients and validated its power in discriminating septic patients from controls using public transcriptomic data from patients of different disease etiologies and multiple geographic locations (18 cohorts, n = 1,213 patients). We identified a panel of surface markers for isolation and quantification of the monocyte state, characterized its epigenomic and functional phenotypes, and propose a model for its induction from human bone marrow. This study demonstrates the utility of single cell genomics in discovering disease-associated cytologic signatures and provides insight into the cellular basis of immune dysregulation in bacterial sepsis.
Description
Other Available Sources
Keywords
General Biochemistry, Genetics and Molecular Biology, General Medicine
Terms of Use
Metadata Only