Publication:
Generalized-stacking-fault energy surface and dislocation properties of aluminum

No Thumbnail Available

Date

2000

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lu, Gang, Nicholas Kioussis, Vasily V. Bulatov, and Efthimios Kaxiras. 2000. “Generalized-Stacking-Fault Energy Surface and Dislocation Properties of Aluminum.” Physical Review B 62 (5): 3099–3108. https://doi.org/10.1103/physrevb.62.3099.

Research Data

Abstract

We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation properties of aluminum. The generalized-stacking-fault (GSF) energy surface entering the model is calculated by using first-principles density functional theory (DFT) and the embedded-atom method (EAM). Various core properties, including the core width, dissociation behavior, energetics, and Peierls stress for different dislocations have been investigated. The correlation between the core energetics and the Peierls stress with the dislocation character has been explored. Our results reveal a simple relationship between the Peierls stress and the ratio between the core width and the atomic spacing. The dependence of the core properties on the two methods for calculating the GSF energy (DFT vs EAM) has been examined. Although the EAM gives the general trend for various dislocation properties, it fails to predict the correct finer core structure, which in turn can affect the Peierls stress significantly (about one order of magnitude).

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories